A comparison between mechano-electrochemical and biphasic swelling theories for soft hydrated tissues.

نویسندگان

  • W Wilson
  • C C van Donkelaar
  • J M Huyghe
چکیده

Biological tissues like intervertebral discs and articular cartilage primarily consist of interstitial fluid, collagen fibrils and negatively charged proteoglycans. Due to the fixed charges of the proteoglycans, the total ion concentration inside the tissue is higher than in the surrounding synovial fluid (cation concentration is higher and the anion concentration is lower). This excess of ion particles leads to an osmotic pressure difference, which causes swelling of the tissue. In the last decade several mechano-electrochemical models, which include this mechanism, have been developed. As these models are complex and computationally expensive, it is only possible to analyze geometrically relatively small problems. Furthermore, there is still no commercial finite element tool that includes such a mechano-electrochemical theory. Lanir (Biorheology, 24, pp. 173-187, 1987) hypothesized that electrolyte flux in articular cartilage can be neglected in mechanical studies. Lanir's hypothesis implies that the swelling behavior of cartilage is only determined by deformation of the solid and by fluid flow. Hence, the response could be described by adding a deformation-dependent pressure term to the standard biphasic equations. Based on this theory we developed a biphasic swelling model. The goal of the study was to test Lanir's hypothesis for a range of material properties. We compared the deformation behavior predicted by the biphasic swelling model and a full mechano-electrochemical model for confined compression and 1D swelling. It was shown that, depending on the material properties, the biphasic swelling model behaves largely the same as the mechano-electrochemical model, with regard to stresses and strains in the tissue following either mechanical or chemical perturbations. Hence, the biphasic swelling model could be an alternative for the more complex mechano-electrochemical model, in those cases where the ion flux itself is not the subject of the study. We propose thumbrules to estimate the correlation between the two models for specific problems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fixed electrical charges and mobile ions affect the measurable mechano-electrochemical properties of charged-hydrated biological tissues: the articular cartilage paradigm.

The triphasic constitutive law [Lai, Hou and Mow (1991)] has been shown in some special 1D cases to successfully model the deformational and transport behaviors of charged-hydrated, porous-permeable, soft biological tissues, as typified by articular cartilage. Due to nonlinearities and other mathematical complexities of these equations, few problems for the deformation of such materials have ev...

متن کامل

Cartilage Dysfunction in ALS Patients as Side Effect of Motion Loss: 3D Mechano-Electrochemical Computational Model

Amyotrophic lateral sclerosis (ALS) is a debilitating motor neuron disease characterized by progressive weakness, muscle atrophy, and fasciculation. This fact results in a continuous degeneration and dysfunction of articular soft tissues. Specifically, cartilage is an avascular and nonneural connective tissue that allows smooth motion in diarthrodial joints. Due to the avascular nature of carti...

متن کامل

Inhomogeneous Response of Articular Cartilage: A Three-Dimensional Multiphasic Heterogeneous Study

Articular cartilage exhibits complex mechano-electrochemical behaviour due to its anisotropy, inhomogeneity and material non-linearity. In this work, the thickness and radial dependence of cartilage properties are incorporated into a 3D mechano-electrochemical model to explore the relevance of heterogeneity in the behaviour of the tissue. The model considers four essential phenomena: (i) osmoti...

متن کامل

Elastic, permeability and swelling properties of human intervertebral disc tissues: A benchmark for tissue engineering.

The aim of functional tissue engineering is to repair and replace tissues that have a biomechanical function, i.e., connective orthopaedic tissues. To do this, it is necessary to have accurate benchmarks for the elastic, permeability, and swelling (i.e., biphasic-swelling) properties of native tissues. However, in the case of the intervertebral disc, the biphasic-swelling properties of individu...

متن کامل

Altered Mechano-Electrochemical Behavior of Articular Cartilage in Populations with Obesity

Obesity, one of the major problems in modern society, adversely affects people’s health and increases the risk of suffering degeneration in supportive tissues such as cartilage, which loses its ability to support and distribute loads. However, no specific research regarding obesity-associated alterations in the mechano-electrochemical cartilage environment has been developed. Such studies could...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of biomechanical engineering

دوره 127 1  شماره 

صفحات  -

تاریخ انتشار 2005